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Abstract— In this paper, we propose a novel direct visual
odometry algorithm to take the advantage of a 360-degree
camera for robust localization and mapping. Our system
extends direct sparse odometry by using a spherical camera
model to process equirectangular images without rectification to
attain omnidirectional perception. After adapting mapping and
optimization algorithms to the new model, camera parameters,
including intrinsic and extrinsic parameters, and 3D mapping
can be jointly optimized within the local sliding window. In
addition, we evaluate the proposed algorithm using both real
world and large-scale simulated scenes for qualitative and
quantitative validations. The extensive experiments indicate that
our system achieves start of the art results.

I. INTRODUCTION
Visual odometry (VO) and visual simultaneous localiza-

tion and mapping (VSLAM) are fundamental problems that
seek to exploit visual information to estimate agents’ poses
with respect to the observed environments. Realtime and
robust systems play an important role in various robotic
applications, such as autonomous vehicles, robot navigation,
and augmented reality.

An effective approach to enhance system robustness is to
increase the field of view (FOV). As the FOV increases,
an image can capture more texture and covisible regions
among sequential frames are expanded as well. It enables the
system to acquire sufficient feature correspondence even in
structure-less environments. In addition, as the proportion of
dynamic objects in each frame decreases, it is easier for the
system to discard outliers improving the accuracy of pose
estimations. In the meanwhile, mature lens manufacturing
technology can produce high-quality but affordable camera
lenses with more than 180-degree FOV. Consequently, we
can realize a fully omnidirectional perception and capture
360 degree horizontal and 180 degree vertical information
via only two lenses attached back to back, as Fig. 1 (top)
shows. The cost of 360 camera has been reduced and its
calibration process is simplified, while commercial products
are becoming more and more popular and accessible, such
as Insta360, RICOH THETA, etc.

However, when the FOV of camera increases even above
180 degrees, features distortion becomes non-linear and the
images cannot be properly rectified into perspective images.
As a result, the standard systems [1]–[5] using the pinhole
camera model cannot make use of wide FOV. Recently,
ORB-SLAM3 [6] upgrades the previous system [2] and
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Fig. 1. Top left: A representative 360 camera that only consists of
two ultra-wide FOV lenses. Top right: An example of its imaging.
With the maturity of lens manufacture, ultra-wide FOV lenses
have become cheaper and have high imaging quality. Bottom: the
corresponding map reconstructed by our proposed system.

introduces the Kannala Brandt camera model [7] to handle
fisheye cameras with a field of view over 180 degrees.
Similarly, omnidirectional DSO [8] modifies DSO [4] for
fisheye and catadioptric cameras by using the unified camera
model [9] and achieves performance enhancement. However,
these methods still cannot deal with 360 cameras.

To take advantage of a single 360 camera, we propose
a novel direct visual odometry method named 360VO. The
system schematic is illustrated in Fig. 2. Similar to DSO,
360VO relies on optimizing photometric residuals instead
of geometric keypoint correspondence to perform tracking.
Specifically, 360VO exploits the spherical camera model to
represent omnidirectional field of view. According to the
specific model, we deduce epipolar constraints and adjust
the mapping algorithm. It maintains a sliding window of
activated keyframes and jointly optimizes their camera intrin-
sic parameters, pose estimations, affine brightness parameters
and inverse depth of points. To validate the efficacy of the
proposed method, on the one hand, we use a hand-held
360 camera to conduct experiments in indoor and outdoor
environments. On the other hand, we utilize a simulator to
render 10 sequences as the ground truth and then compare
our system with another indirect method quantitatively. The
results show our methods achieve state of the art perfor-
mance. To the best of our knowledge, this is the first direct
visual odometry system designed for the 360 camera.



II. RELATED WORKS

VO and VSLAM rely on the information extracted from
images to estimate camera’s poses and reconstruct a 3D rep-
resentation of the world. Various systems (e.g., PTAM [10],
SVO [1], LSD-SLAM [3], DSO [4], ORB-SLAM2 [5], etc.)
have been proposed and can deal with monocular, stereo and
RGBD cameras, significantly stimulating the development of
our community. But it is still an acknowledged problem that
visual systems are vulnerable in dynamic and texture-less
environments, in particular for the monocular system.

To enhance the robustness of the system, Dual-SLAM [11]
introduces a recovery mechanism to handle tracking loss.
When the system fails to estimate pose of the current frame,
it would initialize a new map to process incoming frames and
then propagate the map backward in time to recover the map,
which enables the system to return normal quickly without
the necessity of revisiting the place. Additionally, explicit
dynamic object detection and removal is an effective way to
improve the accuracy of pose estimation. For example, DS-
SLAM [12] and DynaSLAM [13] employ semantic segmen-
tation networks and motion consistency constraints to detect
and discard dynamic elements. DSLAM [14] utilizes point
correlation to separate dynamic points avoiding impairment
of pose estimate. EM-fusion [15] jointly infer dynamic
objects camera poses by a probabilistic formulation which is
capable of robust tracking and mapping in dynamic scenes.

Apart from the perspective of pure algorithm enhance-
ment, another widely used solution is sensor fusion. The in-
troduction of inertial measurement unit (IMU) [16]–[18] and
depth sensors (e.g., Lidar) [19], [20] can provide redundancy
and allow the system works in vision-weak environments.
But it generally leads to complicated calibration and cost
increases. In fact, the most straightforward solution is to
widen the field of view.

Wide FOV cameras can provide images containing suffi-
cient texture and theoretically allows for tracking visual land-
marks over longer periods which are key ingredients to robust
pose estimations [21]. Furthermore, it can maximize the
proportion of static parts in the images such that the impact
of dynamic elements is mitigated. And then implicit dynamic
feature rejection methods, such as RANSAC and graphic
optimization are competent to discard outliers and get ac-
curate estimates in dynamic environments. Omnidirectional
LSD-SLAM [22] and DSO [8] leverage the unified camera
model [9] to extend LSD-SLAM [3] and DSO [4] for the
omnidirectional camera respectively, while ORB-SLAM3 [6]
starts to support fisheye camera input by incorporating the
Kannala Brandt camera model [7]. In term of the multi-
camera system, MULTICOL-SLAM [23] proposes a model
that is applicable to arbitrary, rigidly coupled multi cameras.
Similarly, ROVO [24] is an omnidirectional visual odometry
method for a wide-baseline multi-camera system using a
hybrid projection model. Four cameras are mounted to the
rigid rig and have a 360 coverage of stereo observations of
the environment. But their hardware setup and calibration
procedure are complex. A more cost-efficient way to gain
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Fig. 2. System overview. The input of the system is an equirectan-
gular frame sequence. After initialization, the system keeps tracking
and optimizes relevant model parameters in the local window.

an omnidirectional perception is the 360 camera that consists
of two back-to-back lenses with ultra wide FOV. Currently,
existing systems that can handle 360 cameras are indirect
methods that rely on geometric keypoints correspondences,
e.g., OpenVSLAM [25]. Conversely, our proposed system
360VO takes advantage of photometric features, gradient of
intensity, and seeks to estimate camera poses via optimiz-
ing photometric error. Moreover, 360VO leverages distinct
epipolar constraints to restore depth of points. As it can
make full use of the information of frames, the reconstructed
model is denser than indirect methods’ and exploration
of unfamiliar environments is sped up. Owing to proper
formulation, 360VO achieves robust tracking and low drift.

III. CAMERA MODEL
The camera model describes the mathematical relationship

between the coordinates of a point in three-dimensional
camera space Ω and its projection into the image space
Ψ. Conventionally, image coordinates are denoted as u =
[u,v]T ∈Ψ⊂ R2, 3D point coordinates are denoted as Xc =
[Xc,Yc,Zc]

T ∈ Ω ⊂ R3. In addition, π : Ω → Ψ represents
the projection function which projects a 3D point in the
camera space into a 2D pixel in the image space. The inverse
process, up-projection function is π−1. Generally, the pinhole
camera model is used to describe perspective projection and
the FOV it can represent is less than 180 degrees. When
the FOV increases, features distortions increase non-linearly
from the center to the side of the image. If we attempt to
rectify a wide-angle image into a perspective projection, it
would inevitably introduce interpolation artifacts. To keep
high fidelity, the ideal representation of 360 camera is the
spherical camera model and images is in equirectangular
projection. The spherical camera model only needs two
parameters m = [H,W ]T , where H denotes image height and
W denotes the width.

In 360VO, it involves the transformation among three
coordinate systems, i.e., image space Ψ (Fig. 3(a)), spherical
space Θ (Fig. 3(b)) and camera space Ω (Fig. 3(c)) coordi-
nate systems. The projection function π is formulated as:

π(Xc) =

[
u
v

]
= K

[
lon
lat

]
= K

[
arctan(Xc/Zc)

−arcsin(d̂Yc)

]
, (1)
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Fig. 3. Coordinate systems used in 360VO. It takes advantage of a
spherical model to represent camera projection, and the 2D image
is in equirectangular projection.

where, d̂ = 1/
√

X2
c +Y 2

c +Z2
c is the inverse distance between

the 3D point and center of unit sphere, lon and lat denote
the longitude and latitude in spherical coordinate system
respectively, −π < lon < π and −π/2 < lat < π/2, while
K is the camera intrinsic parameters and modeled as

K =

[
fx 0 cx
0 fy cy

]
=

[
W/2π 0 W/2

0 −H/π H/2

]
, (2)

The function which up-projects image space coordinate sys-
tem to camera space coordinate system is:

π
−1(u, d̂) =

Xc
Yc
Zc

=
1
d̂

cos(lat)sin(lon)
−sin(lat)

cos(lat)cos(lon)

 , (3)

[
lon
lat

]
= K−1

[
u
v

]
=

[
f−1
x 0 − f−1

x cx
0 f−1

y − f−1
y cy

][
u
v

]
, (4)

Note that ideally we can infer the camera intrinsic parameters
K as long as we determine the size (H,W ) of the equirect-
angular image. In our system, K is optimized online.

IV. SYSTEM IMPLEMENTATION

In this section, we describe the pipeline of 360VO while
the system overview is presented in Fig. 2.

A. Model Formulation

360VO is a direct VO method which estimates camera
poses and the depth of features via minimizing photometric
errors without a geometric prior. Following the definition of
photometric error in DSO [4], the energy function of a pixel
p ∈ Ψ in the host frame i regrading to a co-visible target
frame j is

E i j
p = ∑

u∈Np

∥∥r
∥∥= ∑

u∈Np

wu

∥∥∥(I j[u′]−b j)−
t je

a j

tieai (Ii[u]−bi)

∥∥∥ ,
(5)

u′ = π(R jiπ
−1(u, d̂p)+ t ji) ,[

Ri j ti j
0 1

]
= Ti j = T jT−1

i ,
(6)

Here I[·] denotes the pixel intensity, a and b are affine
photometric correction factors, and t is the exposure time.
Np represents a set of neighboring pixels included in the
weighted sum of squared differences (SSD). In 360VO, it
has 8 points, and each point shares the same inverse distance
d̂p. wu is the gradient dependent weight, while || · || denotes
the Huber norm. T−1

i and T−1
j are camera poses of the host

and target frame respectively. u′ is the corresponding point
of u and reprojected by the relative camera pose from the
host frame to the target frame, Ti j. To reduce computational
cost, the optimization of photometric residual is performed
among the frames contained in the local window. Therefore,
the complete energy function is :

E = ∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

E i j
p , (7)

where F represents frames contained in local optimization
window, Pi represents a set of selected points in the frame i
and are randomly sampled from directional points with local
gradients above a certain threshold, and obs(p) represents
the frames that can observe point p.

Basically, to perform tracking of incoming frames which
are considered as target frames, it attempts to find the
poses T j of the target frames minimizing energy function,
argmin

Tj

∑
p∈Pi

E i j. In term of local window optimization, it opti-

mizes entire model parameters M = (Ti,T j, d̂,K,ai,bi,a j,b j)
using bundle adjustment. This process can be formulated as

argmin
M

E. (8)

B. Initialization

To initialize tracking, we set the first frame as the initial
frame and select the points in different layers of the feature
pyramid based on the max gradient of pixel intensity. The
inverse depth of candidate points is set as 1. For each follow-
ing frame, it consistently optimizes the current camera pose,
affine brightness parameters and inverse depth estimations
from the lowest scale to the top scale. Once optimization
has converged and sufficient frames pass by, the coarse
initialization is successful and it starts to track incoming
frames. Compared to the classical monocular system, 360VO
makes use of omnidirectional perception and obtains the
depth covering the agent around from two frames.

C. Epipolar Constraints

After the system successfully estimates camera poses,
the mapping process is performed to incrementally recon-
struct a 3D representation of the observed environment.
Indirect methods benefit from the robustness of geometric
features and can reject outliers according to feature descriptor
matching. As a result, they can directly initialize the depth
of valid points using triangulation. However, 360VO using
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Fig. 4. Epipolar constraints. When tracking succeeds, it needs
to create new activated points and refine their inverse depth via
triangulation. High corresponding points of host frame ci lie in the
epipolar curve instead of line in the target frame c j.

photometric features lacks such an advantage. Similar to
other direct methods [1], [3], [4], we model the inverse
depth estimation of a point with a probability distribution.
Initially, it assumes the true value of depth lies in a large
interval (d̂max, d̂min). With new tracked frames coming in,
it continuously searches for the best corresponding points
which minimize the photometric error Eq. (5). The best
matches are used to refine distribution estimation. Once the
depth search interval becomes small enough, the point is
considered mature. And then the mature point is inserted into
the map and optimized in the local optimization window. To
speed up search and ensure precision, the searching of the
corresponding point should obey epipolar constraints.

We let ρ to represent epipolar plane and S to represent
the unit sphere. The epipolar constraints in camera space Ω

coordinate system can be depicted as{
ρ : aX +bY + cZ +d = 0
S : X2 +Y 2 +Z2 = 1

, (9)

And then epipolar constraints ε in spherical space is

acos(lat)sin(lon)−bsin(lat)+ ccos(lat)cos(lon)+d = 0,
(10)

This implicit function represents a curve in image space.
Therefore, different from the method using pinhole camera
model, our system using spherical camera model needs to
search potential points along the epipolar curves Eq. (10)
instead of lines, as Fig. 4 shows. To perform iterative search
along the epipolar curve, Omnidirectional DSO [8] leverages
linear interpolation to approximate the curve. Supposed two
points P′0,P

′
∞ ∈ Ω lie in the unit sphere C j and correspond

to the maximum and minimum inverse distance, so,

P′0 = πs(R jiπ
−1(p, d̂min)+ t ji) , (11)

P′∞ = πs(R jiπ
−1(p, d̂max)+ t ji) , (12)

here πs denotes the function projecting the 3D points onto
the unit sphere. The epipolar curve in image space is

u(α) = π(αP′0 +(1−α)P′∞),α ∈ [0,1] , (13)

Algorithm 1 Mapping
Input: Frame i with candidate points P∈Ψ, reference frame
j, and relative pose Ti j
Output: Activated points

for point p ∈ P do
initialize search interval (d̂max, d̂min)
P′0← Eq. (11), u′0 = [u′0,v

′
0]← π(P′0)

P′∞← Eq. (12), u′∞ = [u′∞,v
′
∞]← π(P′∞)

the normal of epipolar plane, n = [a,b,c]T ← P′0×P′∞
du′ = (u′∞−u′0)/steps
u′← u′0
while i < steps do

v′← Eq. (15)
E i j

p ← Eq. (5)
record the smallest value Ebest and corresponding
pixel [u′,v′]
u′← u′+du′

i← i+1
end while
update search interval (d̂max, d̂min)
if Ebest < threshold then

activate p
end if

end for

The searching of the corresponding point starts at u(0) and
re-computation of α is necessary for each interaction which
involves first-order Taylor approximation. However, such a
mathematical formulation requires cameras moving slowly.
Otherwise, the errors will significantly fluctuate. This is
because the initial uncertainty of depth is larger and search
interval increases, linear interpolation cannot properly ap-
proximate a long curve. To further increase accuracy, we can
add quantiles d̂1, d̂2, ... to segment search interval, as Fig. 4
shows. As the number of quantiles increases, the incremental
search with a constant step can be performed over each
interval, which does not introduce heavy computation.

Although these methods are efficient, they are still ap-
proximations. In contrast, after solving the implicit function
Eq. (10), 360VO conducts the corresponding point searching
with a constant step along the horizontal direction (u−axis)
of the image. We take the derivative of Eq. (10) with respect
to lat and then we can get

∂ε

∂ lat
→ lat = arctan

−b
asin lon+ ccos lon

+∆constant , (14)

where ∆constant = lat0 − arctan −b
asin lon0+ccos lon0

and
[lon0, lat0]T is calculate with Eq. (1) and Eq. (11).
Integrating Eq. (4), we can further get the explicit function
of the epipolar curve in image space:

v = f (u) = arctan
−b

asin (u−cx)
fx

+ ccos (u−cx)
fx

+∆constant .

(15)

Accordingly, we incrementally search for the corresponding
point with a constant step along the u− axis and compute



v using Eq. (15) for each step. The complete mapping
algorithm of 360VO is depicted in the Algorithm 1.

D. Local Window Optimization

In addition to robustness, processing time is another
important factor in practice. To make a trade-off between
efficiency and accuracy, 360VO performs local optimization
in the back end. The sliding optimization window managers
7 activated keyframes and 2500 map points. When the
transformation from the reference keyframe to the latest
tracked frame exceeds the threshold, a new keyframe will
be created. Moreover, since 360VO relies on photometric
features which are sensitive to illumination change, it is
necessary to create a new keyframe when the relative bright-
ness factor changes considerably. On the other hand, the
keyframe which can observe enough activated points will be
flagged as a marginalizing frame. Apart from utilizing feature
correspondence, the system using a common camera model
can determine invisible points according to transformation.
The point that is no longer reprojected to the current frame
would be inactive. However, theoretically, a 360 camera
can capture omnidirectional information and the reference
points can be reprojected onto current frames disregarding
camera transformation. But, in general, the focal length of
360 camera is extremely short and the angular resolution of
the image is low while the resolution is fixed. Therefore, if
the distance between the reference and the latest keyframe is
larger than the threshold, we marginalize the reference frame
even though the local window is not filled.

As photometric error formulated in Eq. (8), we use the
Gauss-Newton algorithm to jointly optimize all model pa-
rameters, including pose, camera intrinsic parameter and
photometric factors. The Jacobin is defined as

JM=(Ti,T j ,d̂,K,ai,bi,a j ,b j)
=
[

∂ r((δ+x)�ζ0)
∂δ

]
, (16)

where ζ0 ∈ SE(3) and � denotes the operation: se(3)×
SE(3)→ SE(3).

V. EVALUATION

In this section, we extensively evaluate our proposed
visual odometry, 360VO, on both synthetic and real-world
scenarios. To conduct quantitative analysis, we propose a
synthetic dataset with dense ground truth pose for each
frame. Specifically, we employed the Unreal 4 engine to
render 360 video sequences in the realistic urban scene
models provided by [26]. The motion of the camera im-
itates characteristics of human, car and UAV in order to
make the dataset more diverse and representative. In this
way, the sequences cover distinct scenarios with different
motion speeds and visual angles. The dataset consists of
10 sequences. On average each sequence has more than
2k frames, and the resolution of the frame is 1920× 960.
Representative frames of some sequences are demonstrated
in Fig. 5. Besides the evaluation on the synthetic dataset,
we also used a hand-held 360 camera to collect data in both
indoor and outdoor environments in order to further verify
the system’s performance.

Seq0 Seq1 Seq3

Seq5 Seq8 Seq9

Fig. 5. Illustrations of parts of sequences in our synthetic dataset.
The dataset is composed of 10 large-scale video sequences and
rendered in realistic urban models.
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Fig. 6. Comparison of trajectory on sequence 3. The Ground-truth
is in black, OpenVSLAM is in blue while ours 360VO is in red.
The trajectory of 360VO is closer to the ground truth.

A. Quantitative Results

With the synthetic dataset, we compared our system with
the indirect method, OpenVSLAM [25]. OpenVSLAM relies
on sparse ORB features and supports various types of camera
models, including the 360 camera. As systems are non-
deterministic, we perform 10 trials on each sequence and
then compute and report root mean square error (RMSE)
between the ground truth and estimated trajectory, presented
in Fig. 7 (left). Ours 360VO achieves competitive accuracy
compared to OpenVSLAM. 360VO runs stably and has lower
errors on sequences 2,3 and 4, while OpenVSLAM has better
results on sequence 0 and the precision gap is noticeable.
An comparison of trajectory is illustrated on Fig. 6 When
the agent repeatedly revisits previous places, the system
using global bundle adjustment can reduce the accumulated
drift. The scene of sequence 9 is relatively monotonous and
contains lots of similar buildings. Repetitive features affect
the feature matching and increase errors of pose estimations.
360VO outperforms OpenVSLAM on sequence 9, but both
systems have large errors.

Meanwhile, we also conducted an experiment to compare
the systems using different camera models. We unwrap the
equirectangular images to perspective images in order to
form an affiliated dataset. The perspective images are of
640×640 resolution and have 90 degree FOV. And then we
take them as input to run ORB-SLAM [2] and DSO [4]. As
Fig. 7 shows, in general, wide FOV is able to improve the
system’s performance in terms of robustness and accuracy.
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Fig. 7. Results on the synthesis dataset. Each sequence is run 10 times, and RMSE(m) of the trajectory is reported. The number at the top
of each bar is the mean of RMSE. Ours 360VO achieves comparable results in contrast to OpenVSLAM. In addition, we rectify and crop
the 360 images to perspective images of 90o FOV, and take them as input to run ORB-SLAM and DSO. It is obvious that the methods
utilizing 360 camera are commonly more robust and precise.
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Fig. 8. Qualitative results in the outdoor environment.

Fig. 9. Constraints between activated keyframes in the local
optimization window are represented by blue lines, while Magenta
curve denotes camera trajectory. The gray sphere denotes the current
frame’s position, while black points denote the 3D map. Since the
same landmarks can be observed for a longer period, it has great
consistency and low drift.

(a) 360VO (a) DSO
Fig. 10. 360 camera can capture sufficient features spatially even
in the narrow indoor environment with textureless floors, white
walls and dynamic objects. This inherent advantage allows 360VO
to succeed in tracking and reconstruction, while the system using
perspective images is prone to drift. Note: The color on the image
represents the estimated depth of the point, near (red)→ far (blue),
best viewed in color.

B. Qualitative Results

The qualitative results illustrated in Fig. 8-10 are collected
from real-world scenes. As it makes use of the information
in the image, including edges and shades, 360VO is able
to recover semi-dense point clouds of the observed environ-
ments. In addition, it is inevitable for 360 cameras to include
the agents and manipulators. However, since these dynamic
elements only occupy a small part of images, RANSAC and
other optimization algorithms are qualified to remove them
as outliers. Consequently, the influence regarding accuracy
is limited, as Fig. 10 (bottom row) shows. Please refer to the
attached video for more results.

VI. CONCLUSION
In this paper, we propose a novel direct visual odometry,

referred to as 360VO, for a monocular 360 camera. It
takes advantage of the spherical camera model to represent
an omnidirectionally perception view and deduces distinct
epipolar constraints. The system jointly optimizes camera in-
trinsic/extrinsic parameters, inverse distance, and photomet-
ric factors online. Comprehensive experiments on synthetic
and real scenarios prove the effectiveness of 360VO.
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